Running EU-funded research projects
Projects funded by the HORIZON 2020 Research and Innovation Programme
The project is centred in the Polish region of Łódzkie. A region that on the one hand, traditionally heavily relies on coal extraction, and on the other hand, has pioneered circular (bio)economy since the early 2000s. The region has always been in the forefront of innovation and has become one of the leading regions in the field of circular economy. In the next 4 years, FRONTSH1P will contribute to further the green and just transition of the Łódzkie region away from its current linear economic foundation, towards the region’s decarbonisation and territorial regeneration. It will do so by demonstrating four Circular Systemic Solutions. Each circular systemic solution targets an economic sector that is aiming towards decarbonisation: Wood Packaging, Food & Feed, Water & Nutrients, and Plastic & Rubber Waste. Each developed circular systemic solution will furthermore be highly replicable. A feat that will be proven during the project by their implementation in four other European regions: Campania (Italy), Sterea Ellada (Greece), Norte(Portugal), and Friesland (The Netherlands). Through the development of the circular systemic solutions, FRONTSH1P will create Circular Regional Clusters that involve a wide range of local, regional, and national stakeholders, both from the public and private spheres, guaranteeing that no one will be left behind.
Principal Investigator: Marco Baratieri — Faculty of Engineering
Project Duration: 01/11/2021 – 31/10/2025
Project Partnership: 33 Partners from Polonia, Italy, Greece, Portugal, Spain, The Netherlands, Belgium, Switzerland, Germany with K-FLex Polska SP Z.O.O. as Lead Partner
Project Website: frontsh1p.eu
Funding Type: RIA — LC-GD-2020 — grant agreement 101037031
The project aims to further innovative tools and methods to analyse and develop the competencies of entrepreneurs to foster the entrepreneurial potential of both males and females as a source (often under-exploited in the latter case) of economic growth for a society that promotes gender equality in education and entrepreneurship, which align with the objectives and initiatives of the European Union and the Organization for Economic Co-operation and Development. The project will explore the validity of the Entrepreneurship Competence (EntreComp) Framework, which was developed in 2016 by the European Union to foster the development of entrepreneurial competence, by comparing it with American frameworks and studying the competencies of 30 American and 30 Italian entrepreneurs, of which 50% will be male and 50% will be female, through competency analysis tools, such as behavioural event interviews.
WOentrecompMEN will allow the ER to add value to knowledge of this area of study in Europe, particularly at the Free University of Bolzano (Italy), by transferring, adapting and innovating knowledge on American entrepreneurial frameworks, new methodologies and tools based on competencies, the best training practices of entrepreneurship based on the competencies of a country that stands as a role model in the field of entrepreneurship education and developing a network of the best scholars of entrepreneurship in the world from the Ohio University, Babson College of Massachusetts, the University of Florida and the Tampa University of Florida.
Experienced Researcher (ER): Tatiana Somià – Faculty of Economics and Management
Scientific Supervisor: Alessandro Narduzzo – Faculty of Economics and Management
Project Duration: 01/09/2021 — 31/08/2024
Project Partner: Ohio University
Funding Type: Marie Skłodowska-Curie Actions — GF — grant agreement 892825
Recent years of unprecedented heatwaves have affected the forests in all of the biogeographical regions of Europe. Today’s widely implemented forest management schemes mostly concentrate on only a few (coniferous) tree species, which are in turn often found in monocultural stands. This current forest management is widely acknowledged to be inappropriate, as climate conditions are changing rapidly. To face the new conditions, it is necessary to start a transformation of current forest management systems towards more resilient forest ecosystems. Although the resilience of mixed forest stands is well known, old-fashioned silviculture with monocultural appearance is still a common technique and established management systems are often held on to without any sound ecological and economic reasons. Throughout the different countries of the European Union, a vast number of silviculture management systems has evolved, often specialised on the ecosystem it is applied in. Nevertheless, those common management systems might not be the best solution in rapidly changing climatic conditions.
Hence, ONEforest will pursue the following specific objectives:
Within the project, unibz has two roles:
Principal Investigator: Lorenzo Brusetti — Faculty of Agricultural, Environmental and Food Sciences
Project Duration: 01/06/2021 - 31/05/2024
Project Partner: Technische Hochschule Rosenheim (Lead Partner), Università degli Studi di Trento, Univerza V Ljubljani, Technische Universität Graz, Bayerische Forschungsallianz/Bavarian Research Alliance GmbH, Eesti Maaulikool, Eidgenössische Forschungsanstalt für Wald Schnee und Landschaft, Consorci Centre de Ciencia i Tecnologia Forestal de Catalunya, Tartu Ulikool, Technische Universität München, Sveriges Lantbruksuniversitet, Fundacion Centro de Servicios y Promocion Forestal y de su Industria de Castilla y Leon, Albert-Ludwigs-Universität Freiburg, Regione Toscana, Technische Universität Dresden, Georg-August-Universität Göttingen, Arbeitsgemeinschaft Naturgemäße Waldwirtschaft EV, Climate Endowment GmbH & Co.
Funding Type: RUR 2018-2020 – grant agreement 101000406
Project website: www.oneforest.eu
A sustainable social foundation for human life can only develop in an inherent interdependence with the overall ecological ceiling and regenerative economy. ASTRA paves the way for a radically new approach to tackle the major societal challenges faced in the practice of social work. This is done by combining transdisciplinary sustainability transition research, policies, and practices in social work.
The combination creates a novel scientific domain and establishes new transformative standards of social work doctoral training in Europe. Within this frame, the recruited Early Stage Researchers (ESRs) focus in their research on the challenge of social inclusion of young people in precariousness situations as well as people with a migration background in vulnerable communities. In participatory research with the target groups, social work methods are co-created as steps of the transition towards sustainable and inclusive society.
ASTRA investigates the potential of different approaches and methodic models based on nature-based well-being, environmental justice, circular and solidarity economy, sustainable food policies with vulnerable communities, eco-social innovations and contributive justice. The practice-research methodology of social work is applied by the ASTRA consortium, which consists of leading European social work academics involved in sustainability transition research and two non-academic research organisations for environmental and economic sustainability.
The diversity of the partner organisations working on sustainability transition in practice deepens the transdisciplinary approach. Innovative practice-related solutions and fundamentally new types of research-based knowledge will have a long-term impact not only on social work but on society and science at large. ASTRA offers the ESRs novel career perspectives in transdisciplinary research, cross-sectoral policy-making and new economic models at the local, national and European level.
Principal Investigator: Susanne Elsen — Faculty of Education
Project Duration: 01/10/2020 — 30/09/2024
Project Partner: University of Jyväskylä (Lead Partner), Kokkola University Consortium Chydenius, University of Bielefeld, University of Durham, Catholic University of Leuven, ISCTE-University Institute of Lisbon, University of Ljubljana, CIRIEC Section belge, Natural resources Institute LUKE
Project Website: www.jyu.fi/en/research/astra
Funding Type: Marie Skłodowska-Curie Actions – ITN — grant agreement 955518
Global change and climate change compromise forest resources in different ways. Drought related losses in growth efficiency, the increase in intensity and frequency of wild fires and the increase in biological risks are just a few of the most perceptible effects across the forests in Europe as well in many other parts of the world. Global change weakens the efficiency of forest carbon storage capacity and affects the carbon balance of forests in the medium to long term perspective. An adaptive and integrative forest management plays a key role in driving forests to face the environmental changes and to meet both maintaining high forest carbon sequestration potential and guaranteeing economically efficient and ecologically sound forest operations.
ETN Skill-For.Action integrates the fundamental research in forest ecology and applied science of forest engineering. This integration is fundamental to comprehensibly understand carbon dynamics in forests in terms of carbon sequestrations and release.
Overarching objective of ETN Skill-For.Action is to provide high-level training and education in adaptive and integrative forest management to a new generation of early stage researchers for a successful career in the forest-sector and natural resources management.
The education follows an innovative and interdisciplinary approach. The specific scientific career development strategy of each Early Stage Researchers (ESRs) will be accompanied by a unique combination of applied research and training activities delivered by academic and non-academic partners to strengthen complementary soft skills. ETN Skill-For.Action will support each ESR to achieve their individual project through a well-defined supervising strategy by merging the educational experience of the academic supervisors with the practical knowledge of the non-academic supervisors.
Principal Investigator: Camilla Wellstein — Faculty of Agricultural, Environmental and Food Sciences
Project Duration: 01/01/2021 —31/12/2024
Project Partner: University of Padova (Lead Partner), Technical University of Munich, Bern University of Applied Science, Stellenbosch University, National Institute for Agronomic Research Madrid, Warsaw University of Life Sciences, Universidad de Valladolid, RWTH Aachen University, Ministry for Environment, Agriculture, Conservation and Consumer Protection of the State of North Rhine-Westphalia
Funding Type: Marie Skłodowska-Curie Actions – ITN — grant agreement 9556355
Project Website: etnskillforaction.com
FOODMICROHEALTH is an EU-wide Knowledge Platform on Food, Diet, Intestinal Microbiomics and Human Health funded by JPI-HDHL.
It is known that the organism responses to the diet and the relative alteration of susceptibility to disease are worth of investigation to understand the role of the microbiome for maintaining the well-being status in humans. Thanks to its expertise on the standardization and datasharing within the food, nutrition and health axis, the contribution of the Free University of Bozen (unibz) to the Knowledge Platform aims at identifying and quantifying, through a systematic review or meta-analyses, biogenic compounds in foods as consumed in rural vs. urban areas. Special focus will be on anti-oxidant, -inflammatory, -carcinogenic and -microbial activities of biogenic components, as well as on their possible synergism.
The contribution of unibz builds on a networking with national groups previously collaborating within JPI-HDHL projects linking food, diet, intestinal microbiome and human health in urban vs rural populations. The network includes CREA, University of Florence, Bari and Bologna. Each partner addresses different, complementary aspects of a common research framework.
The project includes two phases:
unibz will also estimate the amount of fermented foods consumed in these areas, with food metabolomics and with the content of biogenic components as synthesized by fermenting microorganisms. The results will be analysed in correlation with the gut microbiome (composition and function), and with the salivary, faecal, urinary and blood metabolomes and the healthy status of the individuals as determined by the other research groups of the Platform.
The expected outcomes of these research activities would contribute to open paths towards dietary and microbial components to prevent diet related diseases.
Principal Investigator: Marco Gobbetti — Faculty of Agricultural, Environmental and Food Sciences
Project Duration: 01/01/2020 — 31/05/2022
Funding Type: ERA-NET Cofund JPI-HDHL INTIMIC
SMART PROTEIN is a technology transfer project funded by the European Union’s Horizon 2020 research and innovation programme. It aims to industrially validate innovative, cost-effective and resource-efficient, EU-produced, healthy plant proteins (fava bean, lentil, chickpea, quinoa) and microbial biomass proteins (MBS) (food-grade yeast and fungi) for the production of ingredients and products for direct human consumption, through developing future-proofed protein supply chains with a positive impact on bio-economy, environment, biodiversity, human nutrition, food and nutrition security and consumer acceptance.
The SMART PROTEIN strategy has four major priorities: nutrition, sustainability, innovation and consumer trust and acceptance. These priorities will be addressed through global partnerships forged with consortium members from Europe, North America, Israel, Thailand and New Zealand to develop and demonstrate a climate-smart, sustainable protein-food system for a healthy Europe.
The project is coordinated by the University College Cork - National University of Ireland and involves 34 partners: five Universities and 29 companies (food and beverage producers) and associations (e.g., business accelerators, regulatory bodies, policy makers, crop producers, and consumer organisations). The Free University of Bozen-Bolzano is leader of the work packages dedicated to food processing (in close contact with Barilla company) and to ex-situ studies by using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME).
Principal Investigator: Marco Gobbetti — Faculty of Agricultural, Environmental and Food Sciences
Project Duration: 01/01/2020 — 30/06/2024
Funding Type: SFS-2018-2020 — grant agreement 862957
Project Website: smartproteinproject.eu
Data growth and availability as well as data democratisation have radically changed data exploration in the last ten years. The project INODE (Intelligent Open Data Exploration) aims at simplifying access to data, by allowing a more dialectic and intuitive interaction with data, similar to a dialog with a human.
The goal of INODE is to offer a suite of agile, fit-for-purpose and sustainable services for exploration of open data sets. On the one hand, OpenDataDialog will help scientists search data using natural language, examples, and analytics, get guidance from the system in understanding the data and formulating the right queries, and visually explore and optimise answers and queries and get insights through interactive visualisations. On the other hand, OpenDataLink will help domain experts link multiple datasets, generate structured knowledge over unstructured data, and thus enable queries over heterogeneous data sets.
Principal Investigator: Diego Calvanese — Faculty of Engineering
Project Duration: 01/11/2019 — 30/04/2023
Project Partner: Zurich University of Applied Sciences (Lead Partner), Athena Research and Innovation Centre, Fraunhofer Institute for Computer Graphics Research, SIRIS Academic, French National Centre for Scientific Research, Swiss Institute of Bioinformatics, Infili Technologies PC, Max-Planck Institute for Extraterrestrial Physics
Project Website: www.inode-project.eu
Funding Type: INFRAEOSC — grant agreement 863410
Nowadays great attention is being paid to the concept of Industry 4.0, whose central idea is the exploitation of large amounts of sensor data, so as to enact highly automatised, robust processes and to develop high quality monitoring systems supporting intelligent semi-autonomous decision-making. At the same time, big data analytics and a process-oriented management approach are often indicated as main pillars of a modern company.
Towards this, the main objective of PACMEL is to develop a process-aware analytic framework for analysing sensor and device data for the purpose of process modelling and analysis. The framework can be applied to the data system of smart factories to support the business process management activities. On the one hand, it will allow the creation of conceptual models of particular industrial processes executed in the factory, by combining knowledge extraction techniques with semantics technologies such as ontology-based data access and integration. On the other hand, it will support model mapping methods and visualisation techniques that allow relating the interpreted sensor data to the process models for process analysis. As use-case of the project, we will use a real dataset from the industrial domain of mining. The dataset is related to a very complex and specific process, and working with this challenging example will bring valuable insights and results that can be applied across various industrial domains.
Principal Investigator: Diego Calvanese — Faculty of Engineering
Project Duration: 01/03/2019 — 28/02/2022
Project Partner: AGH University of Science and Technology Krakow (Lead Partner), Universidad Autónoma de Madrid
Funding Type: CHIST-ERA
Hydrogen is the most abundant element in the world and a clean energy carrier, but in classrooms the H2 energy potential is a rarely treated subject. Basic principles of FCH functioning and benefits however are an important subject for school education, ensuring young minds are well equipped for the energy transition and ecological thinking becomes an integral part of their lives. To support energy education in classrooms, the EU project FCHgo develops an innovative narrative-based teaching concept and materials, inspiring teachers, pupils and their parents alike about the world of hydrogen energy.
FCHgo develops an educational toolkit adapted to teaching pupils from age 8 to 18 years. Containing games, stories, roleplays and experimental kits the toolkit visualizes the functioning of energy processes and inform pupils about the manifold applications of hydrogen. In order to ensure materials are well aligned with educational practice and draw on latest FCH research and industry developments, FCHgo partners involve a wide range of stakeholders from education, science and industry in the production of materials.
FCHgo seeks to contribute to energy science education at large by proposing narrative and playful approaches to FCH teaching. The goal is to not only transfer knowledge on fuel cells and hydrogen, but to stimulate pupils’ interest and open their minds to the world of science.
Principal Investigator: Federico Corni — Faculty of Education
Project Duration: 01/01/2018 - 30/06/2021
Project Partner: Università degli studi di Modena e Reggio Emilia (Lead Partner), InEuropa, Zürcher Hochschule für angewandte Wissenschaften, Technical University of Denmark, Nicolaus Copernicus University Toruń, Steinbeis 2i, agado – Association for Sustainable Development
Project Website: fchgo.eu
Funding Type: FCH 2 JU – grant agreement 826246
5G-CARMEN will realise a 5G-enabled mobility corridor from Bologna to Munich to conduct cross-border trials of 5G technologies in four major use cases: cooperative manoeuvring, situation awareness, video streaming, and green driving. The aim is to validate this set of innovative Cooperative, Connected, and Automated Mobility (CCAM) use cases from both business and technical perspectives. To achieve this, 5G-CARMEN will leverage on the most recent 5G technology enablers, including 5G NR, C-V2X interfaces, Mobile Edge Computing (MEC), end-to-end network slicing, and predictive quality of service. Mobile Virtual Network Operators, Over-the-Top providers, and service providers will have access to a multi-tenant platform that supports the automotive sector transformation towards delivering safer, greener, and more intelligent transportation with the ultimate goal of enabling self-driving cars. Specifically, the project pursues the following key objectives:
Principal Investigator: Claus Pahl — Faculty of Engineering
Project Duration: 01/11/2018 - 31/07/2022
Project Partner: Fondazione Bruno Kessler (Lead Partner), Deutsche Telekom, Bayerische Motoren Werke, Centro Ricerche Fiat, Autostrada del Brennero (Brenner-Autobahn), Infrastrutture Wireless Italiane, Telecom Italia, T-Mobile Austria, NEC Laboratories Europe, Nokia Solutions and Networks Germany, Qualcomm CDMA Technologies Germany, SWARCO MIZAR, Eight Bells, CommAgility, CyberLens, DriveSec, WINGS ICT Solutions, Commissariat a l’Energie Atomique et aux Energies Alternatives France, Consorzio Nazionale Interuniversitario per le Telecomunicazioni Italia, Interuniversitair Micro-Electronica Centrum, Promozione per l’Innovazione fra Industria e Università, Universitat Politècnica de Valencia, Kompetenzzentrum – Das Virtuelle Fahrzeug Forschungsgesellschaft mbH, Vereinigung High Tech Marketing
Project Website: 5gcarmen.eu
Funding Type: ICT-2018-2020 – grant agreement 825012
The high power transmissions that have to be designed for modern highly efficient turbofans need the extensive application of epicyclical gears with planet gear containing an integrated bearing. These components are subjected to severe rolling contact fatigue (RCF) conditions as many others (e.g. wheels/rails of high speed trains): propagation of micro-cracks starting from the bearing race surface and leading to spalling is a typical damage mode of these components.
The main objective of the project is to provide innovative, effective and validated criteria for the design and assessment of more reliable planet bearings for aerospace application. Compared to other applications, there is no surface wear to remove the surface damage. In detail, in some specific cases that have led to catastrophic failures, planet gears are affected by cracks starting from the spalls that can bifurcate into the body of the gear wheel, leading to the complete failure of the component. The main idea behind IDERPLANE is to analyse the problem not in terms of the usual stress-based design of gears, but rather on damage tolerance concepts. This kind of analysis is meant at understanding/measuring the risk of a catastrophic failure in the case of development of subsurface propagation of cracks driven by shear stresses. This could be seen an established route, but unfortunately RCF is a grey area where there are no data available for such an analysis (that should be based on reliable crack growth curves for different driving mechanisms), because it is very difficult to make cracks propagate under shear as it happens in RCF (and as it was shown in the known failures of planet gear containing an integrated bearing).
The design approach proposed is based on a preliminary damage tolerance analysis, aimed at identifying the maximum size of the allowable defects, followed by the subsequent crack growth investigation. An effective prediction of the crack growth path, aimed at the maximisation of the reliability, favoured by paths, which produce spalling instead of in core crack propagation, can be achieved only if several influence parameters are considered. In particular, the properties of the base material, the geometry of the component, the heat treatment process, the profile of the residual stresses and the hardness profile, with its case-core transition, are taken into account.
Principal Investigator: Franco Concli — Faculty of Engineering
Project Duration: 01/11/2018 - 31/12/2022
Project Partner: Politecnico di Milano (Lead Partner), Università degli Studi di Brescia, Institut national des sciences appliquées de Lyon, Argo
Project Website: iderplane.eu
Funding Type: Clean Sky 2 – grant agreement 821315
CARE4C strives to develop carbon smart forest management strategies under climate change. We believe that forestry needs to contribute to a low-carbon emitting society. While forest ecosystems sequester and store carbon in different compartments, they emit carbon during forest tending and harvesting activities. The ambition is to reach an integrated picture of carbon sinks and sources in order to adapt forest management to future climate.
The project CARE4C provides a unique opportunity to achieve these goals by employing a large, multidisciplinary and balanced consortium of excellent academic and non-academic institutions covering the entire chain from empirical research, to data evaluation, knowledge integration, statistical and mechanistic modelling, model applications, forest management, and forest harvesting.
Principal Investigator: Giustino Tonon — Faculty of Agricultural, Environmental and Food Sciences
Project Duration: 01/01/2018 - 31/12/2022
Project Partner: Technische Universität München (Lead Partner), Università degli Studi di Padova, Berner Fachhochschule University of Applied Science, Warsaw University of Life Sciences, National Institute for Agricultural and Food Research and Technology Spain, Universidad de Valladolid, Forest Enterprise Traunstein, Landesbetrieb Wald und Holz NRW, föra - forest technologies SLL, Bialowieza National Park, Agresta, Forestry Department Autonomous Province of Bozen-Bolzano, Forstbetrieb Burgergemeinde Bern, Stellenbosch University, Merensky Timber
Project Website: care4c.eu
Funding Type: Marie Skłodowska-Curie Actions - RISE – grant agreement 778322
Industry 4.0 refers to the fourth industrial revolution and technological evolution from embedded systems to cyber-physical systems (CPS) in production. The main objectives of Industry 4.0 can be summarized as the introduction of intelligent systems in production and logistics, the development of highly adaptable and modular manufacturing and logistics systems, the integration of sustainable and advanced manufacturing technologies as well as the promotion of automation technology and human-machine interaction. In the context of Industry 4.0 new ICT and web technologies acts as booster or enabler of smart, autonomous and self-learning factories facing the challenges of even more individualized and customized product portfolio.
A great challenge for the future lies in the transfer of Industry 4.0 expertise and technologies in small and medium sized enterprises (SME). SMEs represent the backbone of the economy and have an enormous importance in the development programmes of the European Union for strengthening the competitiveness of European enterprises. Although the high potential of Industry 4.0 in SMEs, the main limit lies in a lack of concrete models for its implementation and application in small and medium enterprises. Thus, this research project aims to close this gap through the creation of an international and interdisciplinary research network. Identifying the needs and enablers for a smart and intelligent SME-Factory, creating adapted concepts and design solutions for SME production and logistics systems and developing suitable organisation and business models will be the main objectives of this research network.
Principal Investigator: Dominik Matt — Faculty of Engineering
Project Duration: 01/01/2017 - 30/06/2022
Project Partner: Technical University of Kosice, Montanuniversität Leoben, ELCOM sro, Worcester Polytechnic Institute, Massachusetts Institute of Technology, Chiang Mai University, SACS MAVMM School of Engineering
Project Website: www.sme40.eu
Funding Type: Marie Skłodowska-Curie Actions - RISE – grant agreement 734713
FUNBREW integrates both fundamental and applied research to exploit fully the potential of breweries side streams and to enable the development of sustainable food systems. Brewers' spent grain (BSG), the insoluble residue that is separated from the mash before fermentation, is the most abundant beer-brewing by-product. Average annual global production is estimated to be ca. 39 million tons, of which 3.4 million tons produced in the European Union. BSG is mainly constituted by fibres and proteins, which make this material very attractive for subsequent use in food industry. In spite of its potential, at present, the majority of BSG is used al low value animal feed or it is discarded. Currently, no recycling solution exists on a large scale and sustainable approach for BSG exploitation should be implemented. Bioprocessing has shown great potential for the enhancement of many food by-products. Tailored bioprocessing with selected lactic acid bacteria in combination with enzymes will enable the production of functional compounds in BSG. FUNBREW goal is to obtain fundamental understanding on the biochemical and structural modifications occurring during BSG bioprocessing to establish its use as food ingredient. FUNBREW aims at exploiting bio-transformed BSG as a novel food ingredient enriched in functional compounds generating additional nutritional and economic benefits.
Principal Investigator: Raffaella Di Cagno — Faculty of Agricultural, Environmental and Food Sciences
Project Duration: 01/04/2018 - 31/07/2021
Project Partner: University of Helsinki (Lead Partner), University of Bari, RISE Research Institutes of Sweden
Project Website: funbrew.eu
Funding Type: ERA-NET Cofund SUSFOOD2